
APPLICATIVE SPECIFICATIONS OF DISTRIBUTED SYSTEMS: EXTENDING Tal .TC(U)
MAR 81 P ZAVE AFOSR-77-3181

UNCLASSIFIED AFOSR-TR-81-0314 NL

II E EDA9 8 AYLN NVCEE hPAKhEOFCMUE CEEhF/I/

111111.25 fff. IL

W w '.)OY Rll UIA 11 fU.

UN(.1A t'SII HU) ______

SECURITY CLASSIrtCArtOt N OF ?wiS PArE (Rhn Potfs InIer d) :

REPP OCUMENTATION PAGE (A V-.A, ,T !,*'.P.T P F :I I() R 1 ((M1F1 .1. '1 IN , I. () P'.1

z GOV ACT4ib6 NO3R9dII.-5CT N !
PPLICATI VIEPECIFICATIONS OF ISTRIBUTED

1STE'S: EXTN-DING THE!! TO EMBD !-Fln

FYS T Es ' S***..

~YSe- rO1 "j.. OR GRANT..amcla kave' ./)) AF+ R-77-3181,,.

PEFOMIGORGANIZATION NAME AND ADDRESS 'C-OF-AMEL7 -F't

Department of Computer Science
University of Maryland
College Park MD 20742 3 A/ 2

1 1 CONTROLLING OFFICE NAME AND ADDRESS(7" __

Air Force Office of Scientific Research/NM _ _i__I

Boiling ATB DC 20332 KY) ' -U J-:,

ONITORINO AG.LUCV NAVEA & A017MESS -ffI .nI Iffe . Cln,,l gIIi' I"I f,,I (Sh-) - y ', - LsbUNCLASSI FIEI)
4"°"5'tCL A,"° " T C-A

16. DISTRIBUTIONJ STATEMENT (of (his Repot)-

Approved for public release; distribution unlimited. ELECTE

_APR2 1981

17. DISTRIBUTION STATEMENT (of the absbr(-f ent",ed in Block . t different I.

1. SUPPLEMENTARY NOTES

19. VEY WORDS fCnfnln,f ont levelr xide if ar'. n d itle,iffI-7 f~lo'k titi ,

20O AtSSTRACT (Con-ttm , or c .. ,d- It 0i-f 1,11"" Id 'N , 61" o-re I

(Z-) ; 'Recent extensions to applicative langamges have macie it pssihl, tr c lic th,-,
with their numeroits theoretical and practical advantages, [or spcci [ying, the -

L~j requirements and designs of distriluted systems. Fnlbocked systems are an
increasingly important class of distributed systems, and Nive special. problems

-W.,, not adequately dealt with by existing applicative lang-ages. TIhis paper pr-v
poses further extensions, shows how they are used to specify embedded svstem,
and discusses the ramifications of these extensions on the fundamental assirnp-
tions of applicative progranming. _--

DD I vjA ,3 1473 4NIS1 11J
SECU ITY L A . IN ~ I F.D.ir.,

a. , - .., . . , .: .: , > . . " , .: . ., . . , .

AFOSRt-h. 81-0 314
pi

APPLICATIVE SPECIFICATIONS OF DISTRIBUTED SYSTEMS:

EXTENDING THEM TO EMBEDDED SYSTEMS*

Pamela Zave
Department of Computer Science

University of Maryland
College Park, Maryland 20742

USAs

(301) 454-4251

Abstract Recent extensions to applicative languages have made it possible
to use them, with their numerous theoretical and practical advantages, for
specifying the requirements and designs of distributed systems. Embedded
systems are an increasingly important class of distributed systems, and have
special problems not adequately dealt with by existing applicative languages.
This paper proposes further extensions, shows how they are used to specify
embedded systems, and discusses the ramifications of these extensions on the
fundamental assumptions of applicative programming.

*This research was supported in part by the Air Force Office of
Scientific Research (AFOSR-77-31815). Computer time was provided by the
Computer Science Center, University of Maryland.8 1 4 2 0 3 1

Approved for public release; -

distribution unlimited.

AIR FORCE OFFICE Oe SCIEITIFIC RMSUARCH (AFSCt
NOTICE OF TRMCiMITTAL TO DDC
This technical rert ha:- been reviewed and in
approved for pub] : :leu:,e IAW AFR 190-12 (7b).
Distributioi is tainlrited.
A. D. BLOSE
rechntcal Information Officer

. ,,- + -... . . .--. + -

AQ21tc~at.YA Snecifieatlons 9LDsrbte yt~

0. INTRODUCTION

This paper considers the domain of large, complex, special-purpose

computer systems. These systems are often distributed, either because some

long-distance communication is a necessary part of their functionality, or

because the computational power of multiple processors must be brought to bear

on the problemb Early development of these systems should always proceed on

the assumption that the ultimate implementation may be distributed, given the

numerous hardware options available today.

There is a great need for specification techniques that can be used to

help us understand and communicate about these systems. "Applicative

programming" has shown a great deal of promise as a specification technique,

and this paper explains why it seems so advantageous (Section 1) and how

recent extensions to the fundamental concepts have made applicative

specifications of distributed systems possible (Section 2).

The main purpose of this paper, however, is to extend applicative

languages even further, so that superior specifications of requirements and

designs for embedded systems can be written. Embedded systems are defined as

a subclass of large, complex, special-purpose systems, and the proposed

extensions are motivated (Section 3) and defined (Sections 3 and 4). Section

5 discusses their ramifications on the fundamental assumptions of applicative

languages,

1. APPLICATIVE LANGUAGES AS SPECIFICATION LANGUAGES

1.1. l ±ma necifrcatoni A mn1AM1.l

The most basic concept of a specification is that it is an interface

between human intentions and an implementation (Figure 1 , after [Liskov &

Zilles 75])o A person uses the specification to express what he wants; for

this reason it should be both precise and easy to understand. Through the

informal human processes of introspection and communication it is decided that

2

the specification does indeed capture those intentions successfully, often

called "validation"#

There is a family of programs which correctly implement the

specification. Since it is now commonly agreed that both the specification

and the program should be formal objects with well-defined semantics, the

program can (in principle) be proven correct ("verification"). This imposes

on the specification technique the additional requirement that specifications

be easily manipulated and transformed.

Another distinction being implied here is that the implementation "runs"

and the specification does not, The specification is supposed to say what to

do, and the implementation is supposed to say hw to do it.

This concept works best in a domain for which there is a clear, coherent,

theoretical model of what is to be done, and it is easily distinguished from

the "how", Good examples are Boolean algebra as a specification language for

combinational logic circuits, and relations as a specification language for

databases.

1.-2. A rir .x o meom lex ys ms

Systems of the complexity we are interested in require many more layers

of organization. Often separate teams will prepare a set of requirements and

a design specification, while yet a third team does the actual implementation.

If the system is distributed, the design itself may require several

specifications, corresponding to such concepts as application-oriented

functions, network communication, and single-computer operating systems (e.g.

[Smoliar & Scalf 79)).

The model of Figure 1 can be expanded into multiple layers as shown in

Figure 2--but our choice of nart-trlar intermediate specifications is for

illustrative purposes only, and should netbe interpreted as offering a theory

of distributed system designs The requirements specification must be

validated in cooperation with the customer, and serves as the vehicle of

communication to (and perhaps the basis of a contractual relationship with) Li

the -design team. The program specification, prepared by the design team, is [1

the input to the implementation phase.

The design specifications illustrate three different types of

decomposition of complexity, When requirements are elaborated into a design,
'odes

or a design specification is elaborated into a program specification, 'or

3

additional decisions are made and additional detail is added. The former

specification, which contained less detail than the latter, was an

absrantin, Each level of specification (abstraction) provides the "how" for

the level above it, and the "what" for the level below ([Ross & Schoman 77)),

The aspects of the new specification which represent new constraints on the

system must be validated; the aspects of the new specification which are

simply more concrete expressions of what is in the old specification must be

verified.

Figure 2 assumes that network design, application design, and resource

management design are largely independent, and can proceed in parallel with

few integration difficulties at the end. This ambitious form of decomposition

is called grgention, because the entire system description is being projected

onto views, each representing only a subset of the properties of the whole.

Finally, the program specification is seen as the sum of its parts (each of

which can be given to a different programmer), i.e. it is decomposed through

=na .
The concept of specification shown in Figure 2 is closer to what we are

looking for, but it still has several problems. One is that the

administrative and technical goals will often be in conflict: the requirements

specification, for instance, should be a clear, coherent, uniformly abstract,

and theoretically sound model (from the technical standpoint), but should also

include a wide range of legally binding provisos about such things as

equipment and maintenance (from the administrative standpoint), as in [Yeh 2t

Al. 80), Common sense indicates that it will be very difficult to achieve

both.

Another serious problem is that testing, the most powerful validation

tool, cannot be used until the very end--when all validation should have long

been completed! Many people have argued that program verification cannot

replace testing; what they are saying (in these terms) is that verification

J=m a specification cannot replace validation QL the specification.

Unfortunately, the specification cannot be completely validated until it has

been-subjected to testing, which cannot be done until it is translated into

executable form.

Our approach to these difficulties is to look for a single specification

language that is (a) usable at all levels of abstraction, to express a wide

variety of computational views, and (b) executable by an interpreter

14

regardless of the level of abstraction at which it is used. Such a language

would provide maximum leverage in reconciling opposing needs, re-integrating

decompositions, and diagnosing problems early by testing the system during AUl

phases of development. One example of the many payoffs is that the

requirements specification could be interpreted, thus simulating and

displaying proposed system behaviors for the benefit of the customer. His

feedback on detailed system behavior could then be solicited before the

requirements were considered finished.

In this concept of specification, the question arises: What is the

difference between a system and its completed specification, since both run

and generate the same behaviors?

The specification language interpreter will probably be a design tool

running under a general-purpose operating system on a large timesharing

machine. If the speed, reliability, availability, and geographical access

offered by this configuration are adequate for the application, then there

need be no difference--the system specification (when fully elaborated, so

that the only primitives remaining are provided intrinsically) can also be its

implementation, via the interpreter. If, on the other hand, the application

requires high performance or geographical distribution, the interpreter could

never provide a satisfactory implementation, and the system's specification

will be clearly distinguishable from its implementation at any level of

abstraction,

1.3. Aglcttplnaao

"Applicative" (or "functional") languages are those based on

side-effect-free evaluation of expressions formed from constants, formal

parameters, functions, and functional operators. Functional operators are

"combining forms" for functions, such as composition and conditional selection

(the LISP. "cond"), Well-known examples of purely applicative languages are

the lambda calculus, pure LISP, and the functional programming systems of

[Backus 78J.

These languages meet all the requirements for specification languages set

forth above, with interpretability being the most obvious, A primitive

"function" is interpreted as an arbitrary relation from its domain to its

range. When it must be evaluated, the interpreter can choose a range value

randomly, or perhaps ask a user at a terminal which value should be returned

5

(thus providing an interactive testing capability).

Applicative languages also have great powers of abstraction, i.e. of

decision deferment. The expression "f[(g~y],h[z])]", for instance, tells us

that f is to be applied to the values of g~y] and h~z], without constraining

the data, control, or processor structures used to do so. Are g[y] and h(z]

evaluated sequentially or in parallel? In what temporary data structures are

their values stored? Perhaps the arguments y and z are even shipped off to

special g- and h-processors, respectively, at different nodes of a network!

Furthermore, a primitive function can represent a set of deferred decisions

(to be made later by elaborating the function in terms of "smaller"

primit.ves), or a mapping which must remain forever non-deterministic from the

viewpoint of the specification (such as the result of an interactive user's

thought). Because of these many options, applicative languages have been used

successfully to describe phenomena ranging in level of abstraction from

distributed system requirements to digital hardware ((Fitzwater & Zave 77],

(Smoliar 79)).

Applicative languages are also extremely convenient for formal

manipulations such as verification. This is because an expression has

"referential transparency", ie. its only semantic property is its value. An

applicative program can be proven consistent with an axiomatic specification

of correctness, for example, merely by algebraic substitutionl This facility

is one of the major subjects of (Backus 78],

It should also be noted that, as programming languages, applicative

languages may have more potential for efficient implementation than procedural

ones. This is because the "von Neumann bottleneck" of accessing and referring

to memory one word at a time has been eluded ([Backus 78]), so that the field

is clear for high-powered optimization by interpreter writers and machine

designers. The work of Friedman and Wise on large-scale multiprocessing

([Friedman & Wise 78a]) and research on dataflow computers are both efforts in

this direction; neither form of parallelism requires the knowledge or

participation of the programmer.

1.4.* AnpJeatgty. fAL~tl

Applicative languages have a reputation for unreadability in some

circles. We will now argue that the properties of applicative notations which

cause trouble are optional ones, and that by eschewing them we can present an

6

applicative language that is usable even for large-scale software engineering.

The most important of these properties is typelessness: most commonly, in

the applicative programming literature, the only type of data object is the

list or sequence, and all functions are applied to one list and produce one

list. Since every function should be prepared to accept argument lists of any

internal structure, there must be a distinguished "undefined" value produced

whenever the internal structure of the argument is unsuited to the semantics

of the function (as in [Backus 783)--and this mismatch must be detected!

Multiple arguments to or values from functions must be packaged in single

lists, yet the existence of this substructure (or any other substructure, for

that matter) cannot be explicitly acknowledged.

Of course, deliberate substructure in data items is ubiquitous, and it is

common practice to document it with the use of data types. Furthermore,

typing in a language provides a useful form of redundancy which is susceptible

to automated checks of internal consistency,

In the applicative notation used in this paper, names of sets (analogous

to data types) are strings of capital letters and hyphens ("ONE-SET",

"ANOTHER-SET") , and non-primitive sets can be defined using set expressions

("NEW-SET = 'set expression'"). Set expressions use set names and set union

("A U B"), .ross-nriunt ("A x B") , and e ("{ 1=, false 1").
Non-numeric constants are underlined, and integer values are available in the

intrinsic set INTEGERS.

Function names use small letters and hyphens ("new-function"), and the

domain and range of every function, primitive or not, must be declared

(although a function need not have arguments). The domain and range

declarations can use arbitrary set expressions. Here are three example

declarations:

f: ---> A

g: B x C ---> D U E

h: S ---> To

A function is applied to an argument using the syntax "new-function(x]",

and the type of x must be consistent with the domain declaration of

new-function. Consistency can be defined with the assistance of type

conversion, however, so that the composition "h[g[fl]" is perfectly legal if

the definitions:

A z B x C

S INTEGERS

D 1 0,2, , 6, 8

E { 1,3,5,7,9 1

have been made. This notion of typing provides all the documentation and

redundancy desirable for engineering goals, without sacrificing any of the

flexibility attributable to typelessness, All that it requires is the ability

to compare any two set expressions for containment, which is easily done ziv~n
.tJhls nouar jlgzge D -,Lt expressions.

A way to gain simplicity in an applicative language is to restrict the

functional operators, just as in structured programming the control structures

are restricted. In our language non-primitive functions are defined using

functional expressions ("f = 'functional expression'"), and functional

expressions can contain function a ination. and n _atli ,s constructions

("(gly],h[z])"), and ct ("[p1:fl,p2:f2, . . .:fn ,
evaluating to the first fi such that the predicate pi is true). Substructures

of the argument can be identified using formal p ("g[(y,z)]

(p[y]:even~z] r.t:odd~z]]"), as an alternative to selectors such as "car" and

"cdr" in LISP.

Other notations will be introduced as needed. We prefer the style of

using special characters for all delimiters, functional operators, and other

syntactic structures. The resulting specifications are concise, and very

readable because all words appearing anywhere in them are user-chosen names.

Throughout the paper mappings will be called "functions", despite the

fact that mappings named in specifications are often relations. The reason is

simply that "function" sounds more natural; its use is justified on the

grounds that the intention is always to produce a unique value when the

mapping is invoked at runtime, even though that value cannot always be defined

by a known functiotiil expressions

2. APPLICATIVE SPECIFICATIONS OF DISTRIBUTED SYSTEMS

At first glance it may not seem possible that a language containing

nothing but expressions could be capable of specifying whole systems,

especially distributed ones, but this is indeed the case. In this section the

major developments facilitating such specifications are surveyed.

The notation introduced in 1,4 will be the "base language" of this paper.

This section will present a set of extensions to it, as will Sections 3 and 4.

8

The two sets of extensions should be viewed as independent, since they differ

in spirit, but overlap considerably in the structures they make it possible to

specify. There is no reason, however, that the two sets could not be used

together, as long as careful type-checking were provided to ensure local

consistency,

2.1, History-sensitive. cyclicopai

Most complex systems exhibit behavior which is influenced by the history

of past events, and many of them are designed to repeat certain cycles of

behavior forever. These properties can be specified in a purely applicative

expression by adding streams ([Friedman & Wise 78b]), and the functional

operators of traityve closure and e.

A stream is an infinite sequence; if ITEM is a set, then a stream of

members of this set will be denoted "ITEM". Computation on a stream is a

perfectly well-defined notion, as long as no attempt is made to use anything

but initial subsequences of it. Streams are inputs to perpetual, cyclic

computations, and model such phenomena as the stream of characters sent from a

terminal to a timesrnaring system.

Perpetual, cyclic operations on streams are specified using the

functional operators of transitive closure and extension. Extension simply
applies its function to each member of the stream in turn. Thus

"processl~s]", where s is of type ITEM, applies the function named "process"

to each item, producing as its value a stream of processed items.

History-sensitivity is introduced using the transitive closure functional,

which repeatedly applies its function to the previous value of that function.

Thus "f*[x]" produces the stream (x,f[x],ftf[x]],f~flflx]J], . . .

To illustrate the use of these additions, we will specify a database

which is formed by processing a stream of updates. The following are the

definitions required:

database:
UPDATE*

--- > DATABASE*
database(u] =

select-databasel cyclic-updating[u)]

cyclic-ukdating:
PDATE*

--- > YDATABASE x UPDATE#)#
cyclic-updatingu] =

next-update*[(initial-database,u)]

initial-database:

9

---> DATABASE

next-u daLe:
DATABASE x UPDATE*

---> DATABASE x UPDATE*
next-9pdate[(d ,u)] =

(perform-updateE(d,first[u])],rest[u])

perform-update:
DATABASE x UPDATE

---> DATABASE

select-database:
DATABASE x UPDATE*

---> DATABASE
select-database[(d ,u)]

d

The "database" function transforms a stream of updates into a stream of

databases, each successive database reflecting the incorporation of one more

update. The perpetual computation is specified within cyclic-updating, which

repeatedly applies next-update to the current database and the stream of

updates yet to be processed, Next-update produces a new database value and a

new stream of updates yet to be processed. The new database value is obtained

by picking the first update off the stream and performing it on the current

database. The new stream of updates is simply the old stream with its first

update removed ("first" and "rest" are intrinsic functions analogous to car

and cdr, respectively).

2.2. Non-determinism based = rel v

Another important feature of real systems is rate-dependent behavior. It

is common throughout operating systems, for instance, that the next action to

be taken depends on which of a group of activities in progress is the first to

complete.

Such behavior can be modeled in LISP-like languages with the addition of

a new data structure called the mUltistJ ([Friedman & Wise 79a], [Smoliar

79]). A multiset is an unordered collection of objects, but differs from an

ordinary set because duplicate objects may be present. Just as a list in LISP

is formed by applying "cons" to an element and a list, a multiset is formed by

applying "frons" to an element and a multiset.

Both lists and multisets are probed with the functions "first" and

"rest". The difference is that, while the values of first[l] and rest[l] for

any list 1 are fully determined, the value of first[m] for a multiset m may be

Any member of m. However, once first~m] has been evaluated, any subsequent

evaluation of first~m] will produce the same result, and the value of restfm]

10

will be complementary, ie. contain all members of m except first[m]. In

other words, successive probing with first will transform a multiset into alist.

The non-determinism in the multiset concept can be used to model

rate-dependence. This is illustrated for a multiprogramming scheduler in

[Friedman & Wise 79b]. Multiset operations can also be used to form an update

stream for our database as a rate-dependent merge of update streams from three

terminals, as follows:

rate-de endent-merge:
UPDATE* x UPDATE* x UPDATE*

--- > UPDATE'
rate-dependent-merge((a,b,c)]=

sequentialize-by-ratefmake-multisetl(a,b,c)]]

make-multiset:
UPDATE* x UPDATE* x UPDATE*-->UPDATE* s UPDATE* ,UPDATE*

make-multiset[(a,b ,c)]fronsC(a,frons((b,fronsC(c)))

sequentialize-by-rate:
UPDATE* , UPDATE* s UPDATE*

--- > UPDATE*
sequentialize-by-ratelm]

cons[(firstEfirst m]l

sequeotialize-by-Fate . _
frons (restifirstm]]

] rest m]

One new item of notation has been introduced here: Just as "A x B" denotes a

set of lists (each of whose members has a member of A followed by a member of

B), "A , B" denotes a set of multisets, each containing one member of A and

one member of B.

2-3. Inte ion .tLh= henvirnment

A useful system interacts with its environment, and it may be valuable to

have an explicit specification of that environment--especially when

implementing the interactions over distance is one of the main complexities of

the system, This can be done, however, simply by incorporating the

environment into the applicative expression specifying the system.

The environment of our database system, for instance, is the collection

of terminals from which its updates come. A terminal can be modeled as a

function which provides a stream of updates:

11

terminal:
--- > UPDATE*,

and defined as the transitive closure of a non-deterministic primitive

function, "think-of-update", which represents the thought processes of the

person typing in the updates4 Thus the rest of the terminal specification is:

terminal =
think-of-updatet[- l-iupd.te]

think-of-update:
UPDATE

--- > UPDATE,

and the following expression includes the entire system we have been building,

from database to terminals:

datab setrateflependent-merge

terminal,terminal,terminal))],

Note that it makes sense to have three instances of the "terminal" function,

because it is non-deterministic, and will return different update streams in

each instance.

This specification is still quite simple, because (among other things) no

explicit feedback is modeled. In reality, a system must have an effect on its

environment through feedback. In the case of any on-line database system, for

instance, input requests are partially determined by the results of previous

transactions,

Feedback can also be specified applicatively, using the technique of

mutual recursion ([Landin 65]), Without going into the notation, we can see

the effect in Figure 3, where the example is text-editing from a terminal. V

Feedback is introduced by the fact that next-command, mostly representing the

user's thought, has as an argument the response to the last command.

Next-command can be evaluated as soon as the value of initial-response is

ready. The value produced by next-command provides the enabling argument for

the first evaluation of edit-command, whose value provides the argument for

the second evaluation of next-command, etc.

2#4 ~. fl± buedon~uato

The same property that makes applicative languages good for specification

in general makes them good for distributed computing: they do not constrain

evaluation structures, and this extends to where evaluation resources are, and

how arguments and values are moved among them. One dramatic example of the

results of this freedom is suspended evaluation and its concomitant

12

opportunities for large-scale multiprocessing (LFriedman & Wise 78a]).

Another is the use of the "apply to all" functional, which specifies that the

same function is to be applied to all members of a set or list, to represent

parallel processing with dynamic resource allocation ([Smoliar 791).

Doubtless many others will appear as interest in applicative languages

continues to grow.

3, EMEDDED SYSTEMS

Common examples of embedded systems are industrial process control

systems, flight guidance systems, communication systems, defense systems, and

patient-monitoring systems. In this section we discuss the special

characteristics of eabedded systems, and the unmet demands they make on our

applicative specification languages

3-1. Characteristics AndL nroblemso2fgbede sstm

The term "embedded" was coined by the U.S. Department of Defense in

conjunction with its common programming language effort. The DoD's experience

with embedded systems has been that they are indeed large, complex,

potentially distributed, and require the utmost in software engineering effort

([Fisher 782).

"Embedded" refers to the fact that these systems are embedded in larger

systems whose primary purposes are not computation, but this is actually true

of any useful system, The real difference between an embedded system and a

data-processing system is that an embedded system interacts with its immediate

environment, which is usually inanimate, in such a way that non-trivial,

relatively inflexible, performance constraints are required (this is discussed

at length in [Zave 80b]), Thus "embedded" is almost synonymous with
"real-time", but we prefer the newer term because it does not exclude

performance requirements dealing with reliability.

Another important characteristic is that the interface between an

embedded system and its environment tends to be complex, asynchronous,

distributed, and often not reproducible for testing purposes (the environments

of ballistic missile defense systems or spaceflight software, for instance).

This can make it especially difficult to specify precise requirements for an

embedded system, or to determine if a given implemented system meets them.

13

3%~2* Rogj..±ng .tLz environment.

Explicit modeling of the environment, as we modeled the terminals in the

environment of the database system, can do a great deal to alleviate

specification problems associated with embedded systems. Explicit interaction

between an environment model and a proposed system model is a much clearer way

to specify a complex interface than to treat one side of it as a "black box".

The environment model is also the appropriate place to attach many performance

requirements (the load on an on-line database system, for instance, is

dependent only on the number and output rate of the terminals attached). If

the environment model is executable (as a model in an applicative language

would be), it can serve as a simulated test driver for a developing system

which perhaps cannot be tested in any other way. Furthermore, there is good

reason to believe that an environment model will be beneficial to the thought

processes of requirements analysts ([Yeh & Zave 803).

The problem is that the environment/system interface for many embedded

systems cannot be specified in current applicative languages. Airplanes,

spacecraft, machines, and sick people all share the property of being

"free-running", i.e. they continue in their courses of behavior quite

independently of any attempts by computer systems to keep up with them. They

will continue to move, be sick, etc., and the way this happens can be affected

by a computer system, but DniX if the system manages to produce its relevant

signals on time.

When system and environment objects are coupled applicatively, however,

it is in the nature of that coupling to enforce global coordination of supply

and demand with respect to values. In the specification of the database with

its terminals, for instance, there is no way that the specification could be

altered or re-interpreted to cover the possibility that the terminals produce

updates too fast for the database to accept them all. Yet analogous

situations are common--and acceptable--in many real-time systems.

3.3. Pgrformanne ennLraintA

It is obvious from our identification of the term "embedded" with

performance requirements that specifications of embedded systems must have

performance constraints attached. In this case the problem with applicative

specification is that the only absolute "paths" of processing to which

14

performance constraints such as time can be attached are the "paths" between a

desired value and the startup of the system! For perpetual, cyclic

computations, the elapsed time since the system was initiated is neither

relevant nor convenient.

The basis for this conclusion is best seen in the work of Friedman and

Wise on suspended evaluation in LISP (this is mentioned in all their writings,

but the discussion in [Friedman & Wise 77] is "earthiest", and hence most

related to performance),

In LISP all data structures are created by cons. When a value is to be

"consed" onto a list, however, it need not have been computed--instead, the

value can be represented by a suafl±gfl, containing pointers to the

expression defining the value, and to the environment in which that expression

is to be evaluated. A list structure with suspensions is said to be pri ,

It is made manifest by actually jgong the promised computations, and thereby

replacing suspensions with values.

One of the main points of [Friedman & Wise 77) is that user files can be

created in "promised" form, and turned into "manifest" ones only when the

values are actually needed, such as when they are to be printed. This is good

news for an operating system designer, because it gives him the freedom to

delay much of the computation ordered by an interactive user, and hence to

allocate his resources for the maximum satisfaction of all users. Note that

the suspended evaluation strategy has nothing whatsoever to do with what is

being specified by the user's LISP; it is merely one of the many possible

implementation strategies allowed by the LISP semantics%

Back in the realm of embedded systems, however, where performance

requirements are absolute rather than relative, each value is specified as a

purely applicative expression over the initial arguments to the system. Since

computation may be promised rather than manifest, if we want to constrain when

a particular value will be ready for use, we can only constrain how long it

takes to compute it from the system's initial arguments (which are the only

thing we can count on to be in fully evaluated form).

3,4.- -rcss

The reason for the difficulties encountered in 3*3 is that applicative

specifications have no notion if sttA. States would be "footholds" for

performance requirements: since a state should be a manifest data structure,

15

performance requirements would only have to refer to the computation since the

last system state. The exception to the statelessness of applicative

languages, of course, is that there is an initial state containing the values

of the initiating arguments.

Needless to say, there are excellent reasons for avoiding states in

descriptions of distributed systems. Global states are meaningless at worst,

and useless (complex, impossible to determine) at best. But we can effect a

satisfactory compromise by introducing 1nnalj states, which pose no theoretical

or practical problems, yet provide enough attachment points to permit adequate

formal specification of performance requirements ([Zave 79), [Zave Boa)).

When local states are introduced, an applicative specification is

partitioned into a set of 9g.jzi. Each process has a state Aae, or set

of all possible states, and a functin applicatively defined on the

state space. The process is a representation for perpetual, cyclic local

computation; it goes through an infinite sequence of well-defined (and

manifest) states, each state being computed by applying the successor function

to its predecessor (Figure 4).

Processes have long been used as abstractions of concurrent activities

within multiprogramming systems (Horning & Randell 73]). More recently,

processes have been mentioned as a means to introduce history-sensitivity into

applicative programming systems ([Backus 78)) , and used to specify autonomous

natural or digital objects in the environments of digital systems ([Zave 79,

[Zave 80a], (Zave 80b]).

We will now convert the database-and-terminal system into processes

(Figure 5). The database is encapsulated by a process, and each terminal is

specified as a process. Since the succession of process steps is the analogue

of transitive closure in purely applicative notation, the terminal is

converted into a process simply by declaring that UPDATE is its state space,

and "think-of-update" its successor function.

For the database process, DATABASE is its state space, "initial-database"

produces its initial state, and its successor function is:

database-cycle:
DATABASE

--- > DATABASE
database-cycle[d)

perform-update((d ,receive-update)]

receive-update:
---) UPDATE.

This specification has several advantages over the corresponding one in

16

Section 2. It is considerably simpler because the system is partitioned in

time by the states, and in space by the process boundaries.

Another advantage is that it is a more faithful representation of

reality, By not constraining process/processor structures, purely applicative

notation preserves the maximum freedom for the designer of the proposed

system. But the environment of the system has already been "designed" in a

certain way--in this case, a terminal is a remote, autonomous device, best

specified as a process, and certainly not implementable by any kind of

resource-sharing among terminals. It must be construed as a weakness, in this

context, that purely applicative notation cannot express this fact.

Recall that the base notation of 194, which was designed for use with

processes (rather than the purely applicative extensions in Section 2) did not

include recursion or unbounded iteration C"while . . .o . .") nor could

any data structure be of unbounded length. The purpose of this restriction

can now be made clear, It guarantees A D.riji that any computation specified
within a process step can be completed in a bounded amount of time, using a
bounded amount of resources. This, coupled with the fact that many

performance requirements can be specified by constraints within process

successor functions ([Zave 79), [Zave BOa)) paves the way to designing

embedded systems that are guaranteed to meet their performance requirements.

At the same time, the addition of processes to the notation, and the

characteristics of embedded systems, prevent these restrictions from being

burden to the specifier.

Needless to say, something very important is still missing: How Jo

processes communicate? There must be an asynchronous interaction mechanism

that is (a) general, (b) completely compatible with the appiicative framework,

and (c) capable of specifying real-time interfaces. Such d mechanism is the

subject of the next section.

4, EXCHANGE FUNCTIONS

4.1. Ryhancina

Asynchronous interactions between processes can be specified within an

applicative framework using three primitive functions, collectively called

"exchange" functions,

Places in an applicative expression (defining the successor function of d

17

process) where interaction is needed can be called "interaction sites". They

are specified as functions with user-chosen mnemonic names, domain sets that

include all possible output values at that "site", and range sets that include

all possible input values.

Thus the function "receive-update" in the successor function of the

database process is actually an interaction site. There is no output here

(and hence no domain), but the input will be a member of UPDATE.

In specifying a system, it is very convenient to be able tc leave

interaction sites as primitives for awhile, deferring complete specification

of the actual communication. This can be done simply because a primitive

function is a perfect abstraction of our interaction facility, which provides

for mutually synchronized, two-way communication between two interaction

sites,

This is what will happen when a fully specified interaction takes place:

two "ready" interaction sites (meaning that their arguments have been

evaluated) will "match" (how they match is yet to be explained), and arguments

will be exchanged. Each site will then return as its (input) value the

argument (output) of the others

4.2. Matnhing

Each interaction site must eventually be defined as a primitive exchange

function. Since two attributes of the exchange function must be specified,

namely a type ("xq", "xr", or "x") and a channel (a user-chosen identifier',

we use a hyphenated syntax:

receive:upda texq-upLnuU1 .

The string before the first hyphen is the type, and the string after the first

hyphen is the channel. A primitive exchange function must always have one

argument and one value; we use null, the only member of the intrinsic set

NULL, by convention if there is no significant output or input, respectively.

(The interaction site function, which is defined in terms of an exchange

function, must have a value but need not have an argument, as is the case with

reoeive-update.)

Only exchange functions with the same channel can match with each other.

"Normal" matches (as opposed to "real-time" matches, see 4@3) take place

between an "xq" function and an "x" function, both with the same channel.

18

There can only be one xq with a given channel (but many x's), so any

many-to-one competition situations are specified with x's for the many and an

xq for the one. Simply put, if an xq and more than one x, all with the same

channel, are ready to interact, then the xq matches non-deterministically with

any one of the x's--with the proviso that there must be no lockout, i.e.

situations where an x waits indefinitely to be matched while other, more

recently initiated, x's keep going before it.

We can now specify fully the interaction between the database process and

its terminals. The database has already been elaborated down to its xq. The
terminals will use x's, of course, because they must compete for the attention

of the database, The successor function of a terminal process must be

redefined as:

terminal-cycle:UPDATE
---) UPDATE
terminal-cycle(u]

dispose-of-updatefthink-of-updatefu]]

dispose-of-update:
UPDATE

--- > UPDATE
dspose-of-u pdatetu]proj-2- [(u,send-update[u])]

send-update:UPDATE
--- > NULL
send-pdateu]

x-up[nulll.

"Proj-2-1" is an intrinsic function which projects a pair onto its first

element.

Even though xq's and x's are asymmetric with respect to matches, they are

symmetric with respect to synchronization--each may have to wait for the

other. This is illustrated by the timing diagram of Figure 6.

Figure 7 shows a sample implementation which works well in a distributed

environment and automatically prevents lockout. When an x is initiated, a

message carrying its argument is sent to the node where the matching xq

resides. These messages are queued up (the source of the "q" in "xq") in

arrival order. When the xq is initiated, if the queue is empty, it waits

until it is not. When the queue is not empty, it removes the first entry as

the "match", takes the value stored there as its own value, sends A

termination message containing its argument to the matching x, and continues.

Computation can continue at the x as soon as the termination message (with its

value) is received,

19

4.*39 Reltm interactions

Real-time interactions are specified as exchanges between xr's and x's.

The situation is very similar to xq/x matching: there is only one xr (and no

xq) with a given channel, there may be many x's to compete for it, and a

distributed implementation such as that in Figure 7 will successfully carry

out the matching.

The only difference is that if evaluation of an xr is initiated, and

there is no pending x to match with it, the xr evaluation d= = wait.

Instead of exchanging, it returns immediately with its own argument as its

value (thus it is always possible to determine if an xr exchanged, by keeping

its domain disjoint from the domains of any x's that might match with it).

The only modification to the proposed implementation needed for real-time

matches is that if the unique exchange function is an xr, and it is initiated

when its queue of possible matches is empty, then it does not go into the wait

states

Perhaps the most characteristic of all free-running objects is a

real-time clock. It can be specified with the following successor function:

clock-cyle:TIME

--- > TIME
clock-cycle~t] -

proj-2-1[(increment[t] ,offer-time[t])]

increment:
TI ME

---) TIME

offer-time:
TIME

--- > NULL
offer-time[t]

xr-timeLt).
To complete the specification, we should add the constraint that each

evaluation of clock-cycle takes exactly one unit of time. Satisfaction of the

constraint cannot be compromised by synchronization delays, because the only

exchange function used is xr, To read the current time, other processes

evaluate x-time(nul.s Note that with this particular clock, any time value

can be read by at most one process.

Here is a functional specification of a digital simulation of a patient,

a free-running object in the environment of a patient-monitoring system:

patient-cycle:
PATIENT-STATE

--- > PATIENT-STJTE
patlent-cycle pJ J

proj-2-1[(3imulate-patient[(p,treatment-if-any)],

20

offer-sensor-data[sensors[p]]

treatment-if-any:
-- > TREATMENT U NULL
treatment-if-4ny =

xr-nurse[Lzuln]

simulate-patient:
PATIENT-STATE x (TREATMENT U NULL)

--- > PATIENT-STATE

sensors:
PATIENT-STATE

--- > SENSOR-DATA

offer-sensor-data:
SENSOR-DATA

--- > NULL
offer-sensor-data~s]

xr-data s].

The offering of sensor data to monitoring equipment that may or may not be

ready to accept it is similar to the clock's offer of time, but here we have

feedback through medical treatment as well. If treatment is being given

during a cycle of this process, that evaluation of the interaction site

"treatment-if-any" will return a treatment code as input to the simulation.

Otherwise the null value given as argument to xr-nurse will be returned.

The generality of exchange functions has been established in numerous

substantial examples, including a standard message-passing mechanism, an

airline reservation system, a patient-monitoring system, a process control

system, and an adaptive, distributed numerical system that has been

implemented directly from its functional specification ([Zave & Rheinboldt

791). It seems to be sufficient for all bounded forms of communication (i.e.

not unbounded broadcast).* Since the design goal has been to find a minimal

and easily interpreted set of primitives, "higher-level" constructions might

have to be written as macros, of course,

Although the two-way synchronization of exchange functions is also found

in other recent process interaction mechanisms, such as the Ada rendezvous

([Ichbiah AL al. 791) and Hoare's input/output primitives ((Hoare 78]), it is

still- a frequent source of questions. Why can't a process, that wants to

*It should be noted that the formulation presented here is a simplified
version of the original exchange functions (Fitzwater & Zave 772). It may
yet prove necessary to re-introduce some of the former generality, at the cost
of a somewhat more complex implementation.

21

communicate with another Just to give work to it, simply send the work and

continue? Why must it wait until the server is ready to do the work?

The answer goes back to our concern with embedded systems and

performance, and can be illustrated with the database-and-terminals system.

Suppose the xq/x match used to transmit the updates were altered so that

(assuming the implementation in Figure 7) evaluation of an x just terminated

after sending the initiation message, without waiting for a termination

message. Then the speed of the terminals could increase (unchecked by the

ability of the system to handle the work), the queue at the database could

grow to unbounded lengths, and no bounds on the performance of the system

could ever be established.

At the same time, there is nothing wrong with buffering. Any bounded

degree of buffering can be specified by introducing a buffer process between

the terminals and the database.

Given that synchronization is going to be two-way, it costs very little

in the implementation to preserve the possibility of two-way data transfer,

although it is seldom used, It also keeps the number of primitives down by a

factor of two, since otherwise each of the three exchange functions would have

to come in a "sending data" and a "receiving data" version.

Since exchange functions have many similarities to Hoare's input/output

primitives, it is instructive to compare them, In Hoare's language, a pair of

statements, "P?input" in process Q and "Qoutput" in process P, will come

together in the same mutually synchronized manner that two matching exchanges

do, "Output" is an expression whose value is assigned to the variable

"input", assuming appropriate type correspondences. In addition to the

relatively unimportant data asymmetry, Hoare's primitives seem to be different

from exchange functions in three fundamental ways: (a) There is no way to

specify real-time interactions. (b) There is no straightforward way to specify

resource sharing, since all "matches" are one-to-one by process name. In

Hoare's language a p'ocess representing a shared resource must have a separate

command for each process with which it can communicate, and guard that command

([Dijkstra 753) with an input command naming the appropriate process of the

many. The guard (and statement) to be executed are chosen

non-deterministically, based in part on which of the many processes are ready

to communicate. These multiple statements seem distinctly clumsy compared to

an xq/x exchange match. k, hermore, the full knowledge each process must

NINON

22

have about the names of the processes with which it communicates makes

modularity difficult to achieve. (c) Hoare's primitives belong in a

procedural, rather than applicative, framework. The destination of a data

transfer, for instance, is specified by an address,

Establishing the internal consistency of a specification with exchange

functions requires some attention. The range of an interaction site function

must agree with the domains of all those with which it can exchange.

Furthermore, precedence constraints caused by nested evaluation structures can

cause exchange deadlocks. But the channel of an exchange function has been

made a constant attribute rather than an argument to it just so that exchange

patterns would yield to static analysis, and simple arguments do establish

deadlock-freedom in many common cases.

5, RAMIFICATIONS

Exchange functions are not purely aplicative: they do not have

referential transparency, because process interaction is done by side-effect.

It would not be correct, however, to say that something has been lost.

Purely applicative specifications are valuable because they describe

functional properties precisely and executably without requiring any decisions

about performance and resources. But specifications of requirements for

embedded systems must have performance properties, and specifications f

designs for any type of system must deal with resources, and we claim that the

facilities presented here do so in the cleanest, least painful way.

Furthermore, there is reason to believe that any specification which

includes a system's environment loses referential transparency. Consider the

text-editing example in Figure 3. Next-command would be evaliated by

displaying its argument (the response) on a CRT, and prompting the user to

type in the next command, While purely applicative in form, this has an
inevitable side-effect on the environment--the user now thinks he has typed in

that - command, ind will not knowingly repeat it, Purely applicative

expressions, on the other hand, can be evaluated any number of times without

any effect on the functional properties of the system (and will always return

the same value)#

The existence of side-effects has direct consequences on the evaluation

23

of subexpressions with exchange functions. They cannot be optimized to avoid
evaluation of expressions whose yalius are not needed, as in the common

expression "proj-2-1[(a,b)1", where b is an interaction site.

There is also a potential problem with distributing values obtained by

interaction, but the formal parameter mechanism does this nicely. Suppose the
effect of

[equal[(xq-denom[zuU],O)]:: divdator-Q ,xqdnmn!]]

J=: ~ divideLknumerator,xq-denom~nul I
is wanted, where both usages of the value returned by the exchange are

supposed to result from a single evaluation. This can be specified

unambiguously by defining "quotient" as

quotient[(n d)] =
[equalC(d,O)1: d

true: divideL(n,dIjl,
and then using it in the invocation "quotient[(numerator,xq-denom[ni11)]"i.

5.2. Axiomatn s cs2L ditrbuted i

For sequential programs, algebraic axioms are now used to specify
semantic properties. Programs can be verified against these axioms Cbut much
more easily, if they are written in an applicative language). Different

programs could also be proven semantically equivalent to one another on this

basis, the significant difference between two semantically equivalent programs

being in their performance and resource usages

It now appears possible to do the same thing for parallel and distributed

systems. Purely applicative expressions can be used to describe the purely

functional (performance-independent, resource-independent, and referentially

transparent) aspects of the system, and "programs" which use processes and
exchange functions to specify design decisions can be verified against them.
The theoretical basis required will be an axiomatization of process semantics

in terms of purely functional operators and streams, beginning with the
axiomatization of process state succession as an "implementation" of

transitive closure.

The implications are tantalizing, for semantically equivalent programs

would represent different designs (sets of performance/resource decisions) for

the same function. It might then be possible to gain a useful theoretical
understanding of design trade-offs, and the transformations by which a

requirements specification is turned into a detailed design.

24

Acknowledgments This paper could not have been written without D.R.

Fitzwater, who first thought of exchange functions, or Steve Smoliar, whose

correspondence stimulated most of the thinking about applicative programming

that went into it.

References

(Backus 78]
John Backus. "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs", n AM 21, August 1?78,
pp. 613-641.

[Dijkstra 75]EW Dijkstra, "Guarded Commands, Nondeterminacy, and Formal Derivation

of Programs", Comm, AM -. , August 1975, pp. 453-457.

[Fisher 78]
David A. Fisher, "DoD's Common Programming Language Effort", QM u _r -U,
March 1978, pp. 24-33.

[Fitzwater & Zave 77]
D.R. Fitzwater and Pamela Zave "The Use of Formal Asynchronous Process
Specifications in a System 6evelopment Process", Proc. Texas Conf. on
Computing Systems, Austin, Texas, November 1977, pp. 2B-21 - 2B-30.

(Friedman & Wise 77]
Daniel P. Friedman and David S. Wise, "Aspects of Applicative Programming
for File Systems", Proc. ACM Conf. on Language Design for Reliable
Software, Raleigh, N. Car. , March 1977, pp. 41-55.

[Friedman & Wise 78a]
Daniel P. Friedman and David S. Wise, "Aspects of Applicative Programming
for Parallel Processing", TLFE Yra. Cn. j C-27, April 197h, pp.
289-296,

(Friedman & Wise 78b]
Daniel P, Friedman and David S. Wise "Unbounded Computational
Structures", Software--Practice And E 1, July-August 1978, pp.
407-416.

[Friedman & Wise 79a]
Daniel P. Friedman and David S. Wise, "Applicative Mul$ iprogram m ing"l,
Computer Science Tech. Rep. 72, Indiana University, Blocmington, Ind.,
April 1979.

[Friedman & Wise 79b]
Daniel P. Friedman and David S Wise, "An Approach to Fair Applicative
Multiprogramming" . t 2L C o (G. Kahn ed.)
Lecture Notes in domputer Science 70, Springer-Verlag, Berlin, 1979, pp.
203-226.

[Hoare 78]
CA R. Hoare. "Communicating Sequential Processes", Comm. AM 21, August
197, pp. 6g6-677.

[Horning & Randell 73]

,J.o Horning and B. Randell, "Process Structuring", Comp. SurveYs 5,
March 1973, pp. 5-30.

[Ichbiah f.1Al. 79] ,

JD. Ichbiah .IL al. "Ration4le for the Design of the Ada Programming
Language", MfPAN dntlces 14, June 1979, Part B.

[Landin 65]
P.J. Landin "A Correspondence 5etween ALGOL 60 and Church's
Lambda-Notation: Part I", Comm. ACU 1, February 1965, pp. 89-101.

.......I* 1mu l II1 | 1

25

[Liskov & Zilles 75]
Barbara H. Liskov and Stephen Zilles. "Specification Techniques for Data
Abstractions", =TrnSotar nr. , March 1975, pp. 7-19.

(Ross & Schoman 77]
Douglas T6 Ross and Kenneth E. Schoman, "Structured Analysis for
Requirements Definition", L= Ins ofwr Enar. LE-a, January 1977,
pp. 6-15.

[Smoliar 79]
Stephen W. Smoliar "Using Applicative Techniques to Design Distributed
Systems", Proc. Specificat ions of Reliable Software Confe, Cambridge,
Mass., April 1979, pp. 150-161.

(Smoliar & Scalf 79]
Stephen W. Smoliar and Joe E. Scalf, "A Framework for Distributed Data
Processing Requirements", Proc. COMPSAC, Chicago, Ill., November 1979,pp, 535-5&1.

[Yeh & Zave 80]
Raymond T. Yeh and Pamela Zave, "Specifying Software Requirements", Proc.

68, September 1980, to appear.

[Yeh et al.. 80)
Raymond T. Yeh t al. ,"Software Requirements: A Report on the State of
the Art", SfLwa r -ngj •neerng, C.V. Ramamoorthy and Charles R. Vick,
eds., to appear.

(Zave 79]
Pamela Zave, "Formal Specification of Complete and Consistent Performance
Requirements", Proc. Texas Conf. on Computing Systems, Dallas, Texas,
November 1979, pp. 4B-18 - 4B-25.

[Zave 8 0a]
Pamela Zave, "The Operational Approach to Requirements Specification for
Embedded Systems", Computer Science Tech. Rep., University of Maryland,
College Park, Md., in preparation.

(Zave 80b]
Pamela Zave, "'Real-World' Properties in the Requirements for Embedded
Systems", Proc. Annual Washington D.C, ACM Technical Symposium,
Gaithersburg, Md,, June 1980, pp. 21-2e.

[Zave & Rheinboldt 79]
Pamela Zave and Werner C. Rheinboldt, "The Design of an Adaptive,
Parallel Finite-Element System", Trans. Math, o , March 1979, pp.
1-17,

26

* ~~~- ~hIrnQnY%~ tl~~l

*v l vId +iort

+~bte~. ver'ii on~

Figure 1 . The basic concept of a specification.

vat~ ir9di+,c on

revrr I-ne~

network des,3ni

C-X c.i~abk I e- i veriic-tionI o

Jer4i i-±i am

Figure 2, The basic concept of a specification, with multiple layers.,

27

edit-command: COMMAND x TEXT --- > RESPONSE x TEXT
next-command: RESPONSE -- >COMMAND

Figure 3. Data flow in a mutually recursive specification of a feedback loop.

.

arp IeC_,+i~fl5 O

SIACICqCSOr 4(4flCie0,Y1

Figure 4. Computations of a process.

Figure 5. The database system, partitioned into processes.

28

DA'JABA5E

P~ ~ RIOC 55XVs

TETLMMIAL
PRROOC55

Figre .Tmin ofsom d~abae/trmial nteactons

29

V40DE 0

Y.- 61avl LC7!

1NOUE

Figure T. Distributed implementation of exchange matching.

